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Abstract. The behavior of financial markets has, and continues, to frustrate in-
vestors and academics. With the advent of new approaches, including a com-
plex systems framework, the search for an explanation as to how and why mar-
kets behavior as they do has greatly expanded. The use of agent-based models 
(ABMs) and the inclusion of network science has played an important role in 
increasing the relevance of the complex systems framework. Through the use of 
an artificial stock market utilizing an Ising model based agent-based model, this 
paper provides significant insight into the mechanisms that drive the returns in 
financial markets, including periods of elevated prices and excess volatility. In 
particular, the paper demonstrates that the network topology that investors form 
and the dividend policy of firms significantly impacts the behavior of the mar-
ket. However, if investors have a bias to following their neighbors then the to-
pology becomes redundant. By successfully addressing these issues this paper 
helps refine and shape a variety of further research tasks for the use of ABMs in 
uncovering the dynamics of financial markets. 

Keywords. Agent-based model; artificial stock market; networks; dividend pol-
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1 Introduction 

Financial markets commonly produce periods of extreme volatility. In an attempt to 
understand this behavior, the use of a complex systems framework has become increas-
ingly popular. The complex system approach is consistent with the thoughts of [1], who 
concluded that to understand stock market returns, one must consider: imitation, herd-
ing, self-organized co-operativity and positive feedbacks. A further benefit of utilizing 
a complex systems framework is that it allows networks to be included, with their rel-
evance to financial markets being their ability to explain investor trading decisions and 
portfolio performance [2]. The use of ABMs has been a primary tool is trying to under-
stand the dynamics of a complex system and a large volume of work utilizing ABMs 
to create artificial stock markets has been developed. The key rationale for the use of 
ABMs is that they are not constrained to equilibrium conditions [1]. However, the uti-
lization of network structures within these models has been limited. This paper imple-
ments an artificial stock market model that not only makes use of differing investor 
networks but also varies the dividend payout ratio of the risky asset traded in that mar-
ket. This research produces multiple insights that management should consider when 
implementing a dividend policy and investors should consider in general. 



2 The Model 

2.1 Background 
Utilizing the Ising based agent-based model (ABM) of [3] (H&S hereafter) as a foun-
dation, various extensions were made to address the specific research questions. The 
model is implemented in NetLogo 5.3 [4]. The justification for utilizing the H&S model 
as a foundation comes from the key findings of the paper, which included: 

• Price movements were impacted by how influenced investors were by their neigh-
bors. Importantly, the authors suggest that when the initial bias to listening to one’s 
neighbors reached a certain level, a positive feedback loop with regards to investors 
adapting the actions of their neighbors became material, that is, the investors 
‘herded’ and bubbles and crashes appeared; and 

• The asset returns matched the stylized facts of financial markets yet did not match 
the Gaussian distribution of the public and private information. 
 
The basic premise of the H&S model is that boundedly rational investors have access 

to three sources of information; the expected actions of their neighbors	(𝐸$% 𝑎$' 𝑡 ), 
public (𝑝𝑖$ 𝑡 )	and private 𝜖$%(𝑡) information, that they utilize to determine their pro-
pensity to invest (𝜔$%) in a risky asset as per Equation 1. To determine the expected 
actions of their neighbors, each investor polls their neighbors’ actions to see if they are 
buying, selling or holding their risky asset at each step. The other information sources 
are generated by a random draw from a normally distributed probability function. 

𝜔$% = 𝑐0$%	 𝑛𝑡%'2
'30 𝑡 − 1 𝐸$% 𝑎$' 𝑡 + 	𝑐7$%𝑝𝑡$ 𝑡 − 1 𝑝𝑖$ 𝑡 + 𝑐8$%𝜖$% 𝑡         (1) 

The level of influence of each information source is weighted by a combination of 
up to two variables. For the c1ij, c2ij and c3ij variables, investors are initiated with a fixed 
value that is drawn randomly from a uniform distribution between 0 and a user defined 
value. With the variable being used to weight the information the investor generates 
from the particular information source, an acceptable interpretation is that a higher 
value (such as 4), indicates a higher initial bias to the particular information source. As 
investors have a different value for these variables it introduces a level of heterogeneity 
within the population. By altering the c1ij, c2ij and c3ij coefficients, different dynamics 
were generated in the H&S model. In particular, when the upper limit for c1ij is set at 4, 
bubbles in the risky asset’s price appear. Hence, analyzing the impact of different levels 
for this variable and c2ij forms a key component of this paper and the H&S paper. 

The model design is such that the price of the risky asset is endogenously determined 
through a market-making model after each investor makes their investment decision 
and submits their buy or sell orders. Investors then use the subsequent asset returns to 
reassess and adjust the trust they have in each of their information sources via the net-
work trust (𝑛𝑡%') and public trust (𝑝𝑡$) coefficients. These variables are initiated at 0, 
with the investor’s trust based on the ability of the information source to predict an 
appropriate action. An appropriate action being when the information tells the investor 
to buy and the price subsequently increases (and vice versa for a sell signal). 

 



2.2 Model Extensions - Networks 

While there is a large volume of work of utilizing ABMs to simulate financial market 
returns (see [5] and [1] for extensive reviews of the application of ABMs to financial 
markets), the utilization of networks within the various frameworks has been limited. 
The rationale for utilizing networks, is that the behavior of a system can vary greatly 
depending on the network structure (the topology) the system takes. The benefits of 
adding networks to artificial stock markets has been demonstrated in papers such as; 
[6] who showed that network structures are capable of influencing the stability of, and 
the fluctuations of an asset’s price and [3] who demonstrated how bubbles may emerge 
as a result of agents considering different information sources, including the expected 
actions of their neighbors. In addition, works have emerged that show how the topology 
of investor network impacts information efficiency [2] and demonstrate the role that 
centrality plays in determining the dynamics of a market [7] and [8]. 

Within network science literature there are four general types of network; regu-
lar/lattice, random, small world, and scale free networks. In high levels terms, the dif-
ferences relate to how each agent is assigned their neighbors and the number of neigh-
bors they have. The extended model has the flexibility to consider all of these network 
with a range of settings including; the number of neighbors an investor has and the 
probability of how the investors connect to each other. 

In creating the various network topologies, the ability to have the average number 
of edges and the average number of neighbors consistent across the different network 
structures was a key consideration. This meant that any difference in the outcome across 
the networks was not influenced by the number of edges, but solely by the degree dis-
tribution of the network. The significance of the differing degree distribution is that if 
an investor only has one neighbor they will have an initial bias towards public and 
private information, as they collect less opinions and if they have a lot of neighbors 
there will be an initial bias to the information coming from their network as they collect 
more opinions. Consideration was given to normalizing the network information but 
this would have minimized the impact of the different network structures. With inves-
tors continually reassess their trust in each information source, it does not preclude a 
single neighbor becoming very persuasive. Conversely, an investor with a large number 
of neighbors may end up attributing very little trust in them. 

2.3 Model Extension - Dividends and Earning Expectations 

To remove a level of abstraction in the original model, a new source of public infor-
mation along with dividends were introduced. To achieve this, earnings per share (EPS) 
for the risky asset was introduced as it reflects the income generating ability of the asset 
and is a key component in determining the fundamental value of an asset. The EPS 
value at each step is drawn from a Gaussian distribution, in a similar manner as the 
H&S model, but with the probability density function (PDF) having a mean equal to 
the initial price of the asset divided by the model’s timeframe which is then further 
divided by an appropriate price earnings (PE) ratio. The extended model used a quar-
terly timeframe with an initial price and PE of 1 and 15. The standard deviation was set 
at 50 percent of the mean. A consensus earnings forecast is also included because ac-
cording to [1] “in a given financial bubble, it is expectation of future earnings rather 



than present economic reality that motivates the average investor”. The model com-
puted the forecast by using a moving average of the asset’s EPS history with an expo-
nentially decreasing kernel, determined by a memory variable. 

To determine the value of public information, the extended model has the investors 
assess the actual EPS for the asset at each tick against the consensus forecast, as per 
Equation 2, rather than the Gaussian process used in [3]. If the actual earnings exceed 
the consensus estimate (𝑝𝑖9$ > 0), this is considered an earnings surprise, resulting in 
a buy signal and vice versa for a miss. If earnings meet expectations, then the infor-
mation adds no value because the investor assumes the information is already reflected 
in the price. Support for the extension comes from the volume of work that shows stock 
prices react positively to positive earnings news, yet it takes time for this information 
to be reflected in the price of the asset [9]. 

𝑝𝑖9$ = 	
<=>?(9)@	A=>B?(9)

<=>B?(9)
                             (2) 

In a further extension, the risky asset returns a dividend (DPS) if the EPS for a period 
is greater than 0. The justification for introducing dividends is that they are a key com-
ponent in the total return of a financial asset. For example, for the S&P 500, dividends 
are responsible for 42% of total returns [10]. Despite the role dividends play in sup-
porting returns, it should be noted that the reason why firms pay a dividend is an area 
of ongoing discussion, with no decisive evidence supporting the argument they are used 
to signal favorable information to the market or to mitigate agency problems [11]. An 
alternative view has been provided by firstly [12], and supported by [11], with the pro-
posed dividend catering theory Under the theory, investors’ demand, and therefore any 
premium that dividend paying firms attract, is dependent on investors’ appetite for div-
idends at any particular time, which in turn varies based on market conditions. 

The extended model determines the asset’s dividend as per Equation 3. The justifi-
cation for the use of a payout ratio, as opposed to an absolute dividend, is summarized 
by [13], who suggest a firm’s payout ratio is dependent on a combination of various 
accounting metrics including; profitability, cash flow and debt to equity ratio. 

𝑑$ 𝑡 = 	 𝑒𝑝𝑠$ 𝑡 ∗ 	𝑝𝑎𝑦_𝑜𝑢𝑡_𝑟𝑎𝑡𝑖𝑜$                              (3) 
The presence of the dividend will boost returns for investors. Therefore, when inves-

tors reassess their trust based on the returns of the asset if the price increased the level 
by which the trust is reassessed is amplified due to the dividend. However, if the price 
declines after negative news the signal is suppressed due to the dividend. Therefore, 
investors will tend to revise upwards their trust at a faster rate than they revise it down-
wards. The impacts of this are assessed in Section 3. 

Despite receiving a dividend investors do not have access to those funds for the pur-
pose of further investing. This ensures that the extended model remained consistent 
with original model, which was closed to new funds.    



3 Results 

The extended model was utilized to assess the impact of changing the source of public 
information and varying the payout ratio along with how investors were connected (ei-
ther a lattice or scale free network). The lattice network is used as it allows for a direct 
comparison with the H&S paper, while the use of the scale free network resulted in the 
most contrasting results. The initial levels of network (𝑐0$%	or	c1	)  and public bias 
(𝑐7$%	or	c2	) are varied to explore the dynamics of the model in a similar fashion to the 
H&S paper. The justification for varying c1 is to see if a bubble or excitable movements 
still result when the investors have a higher initial bias to the information from their 
network. The increase in c2 is designed to test whether investors having a higher initial 
faith in the value of public information is capable of preventing the positive feedback 
loop that results in investors blindly following their neighbors’ behavior.  

A summary of how the prices (and therefore returns) varied for the various networks 
scenarios is provided in the boxplots in Fig. 1. (all figures have been produced using 
[14]). The data for the plots comes from determining the mean price from the 30 runs 
of 2,500 ticks for each of the particular settings in the parameter sweep. The remaining 
settings for the experiments are consistent with those of the H&S paper, including there 
being 2,500 investors with the average number of neighbors being 4. The degree distri-
bution of neighbors is constant for the lattice network while the scale free network has 
a power law like degree distribution.  

 

 

Fig. 1. Boxplots of the mean prices from varying networks, payout ratios and public infor-
mation bias 



From Fig. 1. it can be seen that there is both a large variation within and between the 
various networks and the payout ratios. In terms of the lattice network it can be seen 
that once the initial bias to listening to your neighbors (the c1 variable) is set at 4 then 
the mean price is greater than 8 once the dividend payout ratio is increased to 33%. For 
the scale free-network, it can be seen that the c1 variable does not need to be increased 
to 4 for the mean to move away from 1. The other point of note is that the scale free 
networks maintains a higher degree of variability in general across the various settings.  

The impact on the price of the asset for the two network topologies through varying 
levels of 𝑐0$%, 𝑐7$% (detailed in the heading by the c1 value) and the payout ratio results 
are illustrated in the fan plots [15] in Fig. 2. through Fig. 5. The lattice results are seen 
in Fig. 2. and Fig. 3. and the scale free network in Fig. 4. and Fig. 5.. The fan plots were 
formed from 30 runs for each parameter setting and the reader should note that the x-
axis in these charts is time as determined by the tick/step number of the experiment.  
The plots have the median price for the sample marked with the line marked with 50%. 
 

 
Fig. 2. The impact of varying payout ratios with c1 = c2 =1 over time for the lattice network  

The upper left hand corner of Fig. 2., shows the setting of c1 = c2 = 1 and no dividend. 
These settings see no volatile price movements with the price series confined to a nar-
row bound around 1. This result effectively replicates the results from the H&S model 
with similar settings thus supporting the use of the extended model. While the price 
band is narrower than the H&S model, tests confirmed that the distribution of returns 
did not fit a Gaussian distribution, which is consistent with the H&S model. Further 
verification of the extended model is illustrated in the top left hand corner of Fig. 3, 



where the settings are changed to c1 = 4 with no dividend. Now bubbles and crashes, 
comparable size to the original model appear, albeit they appear with greater regularity. 

 

 
Fig. 3. The impact of varying payout ratios with c1 = 4 and c2 =1 over time for the lattice network 

The introduction of a dividend impacts the price series in a number of ways. Firstly, 
from Fig. 2. it can be seen that as the payout ratio is increased from 0 to 1, the median 
and the volatility of the price series increases. At this point it is worth remembering the 
key characteristic of the model, namely that a dividend is only paid when the EPS for 
a period is greater than 0 and the investors cannot reinvest the proceeds. Also a sell 
signal is generated when the EPS result for the asset is less than the consensus forecast 
for the asset. which occurs approximately 50% of the time. In the instance that EPS < 
0 and the result is below the consensus, the sell signal will not be diluted by the payment 
of the dividend. However, if the EPS result is positive, a dividend is paid which will 
boost the returns thus reducing the power of the sell signal, which in turn may limit the 
growth in trust for the public information. The likely impact of this being that the trust 
that investors generate in the information from their network is likely to go unchecked 
by the public information. This in turn will result in the formation of more herds as 
investors tend to follow the actions of their neighbors rather than acting on public in-
formation or even their private information. The consequence of the formation of more 
herds is that the price will increase in range and volatility based on the size of the herd. 

It was seen in Fig. 2. that the introduction of a dividend under a regime where there 
was no initial bias to any information source had a mild impact. However, the results 
in Fig. 3., which illustrate the outcome of setting c1 to 4 (a setting that is responsible 



for the creation of a bubble in the H&S model), are far more explosive. The most telling 
result is that once the dividend is introduced the behavior post the inflation of the bubble 
is very different. In particular, the bubble does not deflate once the payout ratio is 
greater than 33%. Even with a payout ratio of 33%, the median price remains in bubble 
territory, but the investors can experience a high degree of volatility but it is not suffi-
cient to move the median price materially from its’ upper limit. When the payout ratio 
is 66% or greater, the median does not move once the bubble is formed.  

The significance of these findings are that if there is a high initial bias amongst in-
vestors to listening to your neighbors (c1 = 4), the introduction of a dividend sees in-
vestors form a buying herd and they can never be persuaded to switch (by analyzing 
the intentions of the population this process was confirmed). The herding occurs re-
gardless of what the investors’ public and private information sources are telling them, 
including the fact that the EPS of the asset will miss consensus on average 50% of the 
time, thus creating a negative score for public information and providing a sell signal. 
This phenomenon occurs because the trust the investors place in the actions of their 
neighbors dominates the decision making process and the trust does not subside nor can 
the trust in the other sources build sufficiently to displace it. 

To confirm the previous observations, a Kruskal-Wallis rank sum test was used to 
test the null hypothesis that dividends have no impact on price. This test was used be-
cause the distributions of the prices violated the assumptions for a one-way ANOVA 
test. The null was rejected for all combinations of initial public (c2) and network bias 
(c1). The inference to be drawn is that increasing the payout ratio has a positive impact 
on the price for an asset despite the earnings profile remaining similar.  

The results of the utilization of a scale free network are shown in Fig. 4. and Fig. 5., 
and confirm the initial findings seen in Fig. 1, that is the scale free network generates 
results that a significantly different to the lattice network. The key difference, as seen 
in the top left of Fig. 4. is that a bubble is generated despite their being no dividend and 
the investors having no initial bias for listening to their neighbors (c1 = 1). A similar 
result is also generated when the original source of public information is utilized in 
combination with a scale free network. This provides another key finding of the ex-
tended model, that is if investors are linked in a scale free network, the market will be 
more volatile, regardless of the bias that the investors may or may not have towards the 
information coming from their neighbors.  

The work of [2] provides a possible explanation for this result, where they proposed 
that price volatility will be highest in markets with an intermediate level of connected-
ness yet lower in markets with higher or lower connectedness. Indeed, while the scale 
free network does have a lower average betweenness measure than the other topologies, 
it does have intermediate clustering when compared to other network topologies. Inter-
estingly, this finding appears to become somewhat irrelevant once the initial bias to 
listening to one’s neighbors increases. 

Returning to Fig. 4., we can see that as the dividend payout ratio is increased, two 
points of interest appear. The first is that the median price is greater than 1 in the earlier 
time periods and the second being that the volatility of the system appears to increase. 
The median price series also behaves in a contrasting manner to the lattice network, as 
it appears to revert to 1 (or at least trend down) in all cases except the 100% pay out 
scanerio. Interestingly, in the 0% payout case, the median price drops well below 1 
following the initial crash of the bubble, before trending up to 1. This occurs because 



the investors continue to sell all the way to the bottom as they remain in a selling herd. 
The other scenarios still experience the initial crash but the dividend cushions the fall 
and the selling herd dissipates earlier. Given the contrasting findings to the lattice net-
work, it appears that the effectiveness of a company’s management to support their 
share price will be influenced by the network that their investors have formed. 

 

 
Fig. 4. The impact of varying payout ratios with c1 = c2 =1 over time for the scale free network 

The result of increasing c1 to 4 as per Fig. 5., produce a diverse set of findings in 
comparison to the lattice network. Firstly, the median price only remains in bubble ter-
ritory once the payout ratio is 66% or greater. For anything less the bubble will deflate 
and the price returns to its fundamental level. Even at the 66% payout ratio, while the 
median price remains high, there is far more volatility in the series. The other point is 
that the bubbles do not reach the same level as the lattice network and there appears a 
minor downward trend overtime, something not seen in the lattice model.  

The impact of increasing c2 (the initial bias to public information) provided a number 
of interesting insights. From Fig. 1. the initial impression is that while the movement 
of the median price away from 1 still occurs, it is more gradual and does not reach the 
same level achieved by c1 = c2 = 1. A possible explanation, that is explored latter, is 
that the impact of higher initial bias to public information is to slow the growth in the 
trust among neighbors, which in turn diminishes the probability of a herd forming. This 
occurs because under this regime the influence of fundamental analysis is not diluted 
to the same extend in the decision making process. Therefore, this result identifies a 
mechanism that can prevent the inflation of a bubble, namely investors having a 



stronger initial faith in their public information source. The implication being that the 
use of fundamental information must remain in the population if excessive price move-
ments are to be avoided.  

 

 
Fig. 5. The impact of varying payout ratios with c1 = 4 and c2 =1 for the scale free network 

To answer the questions as to why the different network topologies and payout ratio 
create such different results, one needs to look at the dynamics regarding the trust that 
the investors have in the information coming from their neighbors. Noting that bubbles 
result when the positive feedback mechanism with regards to investors adapting the 
actions of their neighbors becomes material, Fig. 6. provides boxplots for the average 
network trust, in the same manner that Fig. 1. did for prices. 

What becomes apparent is that the level and deviation of network trust in each of 
scenarios matches the price series, thus providing support to the argument that it is the 
level of trust investors have in their neighbors that is primarily responsible for driving 
market volatility. Of particular note is the lattice network where c1 is set to 4. This 
scenario, which is responsible for a bubble remaining inflated (when the payout ratio 
was greater that 33%), has the highest level of trust and a lower deviation in trust once 
the payout ratio increases above 33%. In summary from Fig. 6., it is apparent that the 
level of trust can be impacted by the network topology that investors form, the dividend 
that companies pay or the level of bias investors have to public information.  

 



 
Fig. 6. Boxplots of the mean network trust from varying networks, payout ratios and public in-
formation bias. 

4 Summary and Conclusion 

The conclusion drawn from this paper is that dividends play an important part in sup-
porting a bullish sentiment amongst investors as they underwrite returns, which in turn 
supports the positive feedback process of investors imitating their neighbors. Therefore, 
providing management with the ability to influence their share price through their div-
idend policy. This result contrasts with the capital structure irrelevance principle of 
[16], which states that the market value of an asset is a combination of the earnings 
power and the underlying risk of a firm’s assets, leaving the dividend policy as irrele-
vant. In reality this may be a short-term view because increasing the payout ratio comes 
at a cost, namely a lack of investment in future growth. Therefore, the earnings profile 
of the company will quite possibly be unsustainable. 

To be fully effective in managing their share price, management will need to under-
stand how and if their shareholders are connected and whether they have a particular 
bias to an information source. As for the impact of investors being more susceptible to 
following their neighbor it was observed by [17], who suggested that markets had 
tended to be more efficient when professional investors using fundamental analysis 
controlled them. It had been the result of “uneducated” investors, who tended to follow 
the crowd, entering the market that created the greater volatility.  



References 

1. Sornette, D. (2014). Physics and Financial Economics (1776–2014): Puzzles, Ising and 
Agent-Based Models. Reports on Progress in Physics, 77(6), 062001. doi: 
10.1088/0034-4885/77/6/062001 

2. Ozsoylev, H. N., & Walden, J. (2011). Asset Pricing in Large Information Networks. 
Journal of Economic Theory, 146(6), 2252–2280. doi:10.1016/j.jet.2011.10.003 

3. Harras, G., & Sornette, D. (2011). How to Grow a Bubble: A Model of Myopic Adapt-
ing Agents. Journal of Economic Behavior & Organization, 80(1), 137–152. doi: 
10.1016/j.jebo.2011.03.003 

4. Wilensky, U. (1999). Netlogo. Northernwestern University. Evanston, IL: Center for 
Connected Learning and Computer-Based Modeling. Retrieved from http://ccl.north-
ernwestern.edu/netlogo 

5. LeBaron, B. (2006). Agent-based Computational Finance. In Handbook of Computa-
tional Economics (Vol. 2, pp. 1187–1233). Amsterdam: North Holland. 

6. Panchenko, V., Gerasymchuk, S., & Pavlov, O. V. (2013). Asset Price Dynamics with 
Heterogeneous Beliefs and Local Network Interactions. Journal of Economic Dynam-
ics and Control, 37(12), 2623–2642. doi:10.1016/j.jedc.2013.06.015 

7. Ozsoylev, H. N., Walden, J., Yavuz, M. D., & Bildik, R. (2014). Investor Networks in 
the Stock Market. Review of Financial Studies, 27(5), 1323–1366. doi: 
10.1093/rfs/hht065 

8. Walden, J. (2014). Trading, Profits, and Volatility in a Dynamic Information Network 
Model. SSRN Electronic Journal. doi:10.2139/ssrn.2561055 

9. Kothari, S. P., Lewellen, J., & Warner, J. B. (2006). Stock Returns, Aggregate Earn-
ings Surprises, and Behavioral Finance. Journal of Financial Economics, 79(3), 537–
568. doi:10.1016/j.jfineco.2004.06.016 

10. Ro, S. (2013). Dividends Were Responsible For 42% Of Stock Market Returns Since 
1930. Retrieved from http://www.businessinsider.com/stock-returns-price-dividend-
contribution-2013-1 

11. Li, W., & Lie, E. (2006). Dividend changes and catering incentives. Journal of Finan-
cial Economics, 80(2), 293–308. doi:10.1016/j.jfineco.2005.03.005 

12. Baker, M., & Wurgler, J. (2004). A Catering Theory of Dividends. The Journal of Fi-
nance, 59(3), 1125–1165. http://doi.org/10.1111/j.1540-6261.2004.00658.x 

13. Gill, A., Biger, N., & Tibrewala, R. (2010). Determinants of Dividend Payout Ratios: 
Evidence from United States. The Open Business Journal, 3(1), 8–14. doi: 
10.2174/1874915101003010008 

14. R Core Team. (2015). R: A Language and Environment for Statistical Computing. Vi-
enna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-
project.org/ 

15. Abel, G. (2015). fanplot: An R Package for Visualising Sequential Distributions. The 
R Journal, 7(2), 15–23. 

16. Miller, M. H., & Modigliani, F. (1961). Dividend Policy, Growth, and the Valuation of 
Shares. The Journal of Business, 34(4), 411. doi:10.1086/294442 

17. Keynes, J. M. (2007). General Theory of Employment, Interest and Money. London: 
Macmillian. 

 
 
 


