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Abstract. In the context of sustainable development, complex adaptive sys-
tems frameworks can help address the coupling of macro social, environmental 
and economic constraint and opportunity with individual agency. Using a sim-
ple evolutionary game approach, we fuse endogenously derived socio-
economic system dynamics from human and nature dynamics (HANDY) theo-
ry with Prisoner’s Dilemma spatial intra-societal economic transactions. We 
then explore the potential of spectral information from the social network ad-
jacency matrices to predict synchronization dynamics. 
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1 Introduction 

Social scientists have long identified dynamic linkages between economic develop-
ment, population dynamics, and environment [8][6][11]. Starting in ecological eco-
nomics, the human and nature dynamics (HANDY) perspective is a quantitative, 
trans-disciplinary approach to understanding modernization and development 
through interdependent economic and social forces at the aggregate society level. 
Here we extend previous work by Motesharrei.’s [11] novel systems dynamic repre-
sentation of the theory at the societal level towards integrated macro-micro scales in 
a complex adaptive systems framework using an agent based approach. As macro-
scopic structures emerging from microscopic events lead to entrainment and modifi-
cation of both, co-evolutionary processes are created over time [13]. Similar to 
Abdollahian et al [1-3] and Yang [15], we posit a new, approach where agency mat-
ters: individual game interactions, strategy decisions and outcome histories deter-
mine an individual’s experience. These decisions are constrained or incentivized by 
the changing macro economic, cultural, social and political environment via human 
and nature dynamics theory, conditioned on individual attributes at any particular 
time. Emergent behavior results from individuals’ current feasible choice set, condi-
tioned upon past behavior and macro outcomes. Conversely, progress on economic 
development, the formation of cultural mores, societal norms and democratic prefer-
ences emerge from individuals’ behavior interactions. 

To explore potential real-world applications of this analysis, we consider the po-
tential explanatory power of information contained in the eigenspectrum of the La-
placian matrix describing the dynamic adjacency matrices of the underlying social 



network of relationships between competing agents.  As our extension of the 
HANDY model takes place, like so many complex processes, in a network setting, 
the time to equilibrium, or the time to more weakly defined states such partial syn-
chronization or effective cooperation, is a quantity of key interest.  It has been 
demonstrated in [4] that spectral information can anticipate topological scales, and in 
certain oscillator models this allows anticipation of the time to synchronization. Oth-
er work, such as [13], has extended this research into less stylized problems, includ-
ing models with non-monotonic and non-linear paths to synchronization, with some 
success.  We follow in this vein.  This approach, borrowed from the theoretical phys-
ics literature, allows potential mean-field style analysis of an otherwise intractably 
complex game, and potentially the ability to anticipate the outcome and temporal 
characteristics of complex games featuring artificial intelligence without the need for 
complete and exhaustive simulation. 

2 HANDY Background 

HANDY postulates a development process in which inequality and use of resources 
play a critical role. Brander and Taylor [5] developed an ancestor model of popula-
tion and renewable resource dynamics and demonstrated that reasonable parameter 
values can produce cyclical feast and famine patterns of population and resources. 
Their model shows that a system with a slow-growing resource base will exhibit 
overshooting and collapse, whereas a more rapidly growing resource base will pro-
duce an adjustment of population and resources toward equilibrium values. Howev-
er, this approach does not include a central component of population dynamics: eco-
nomic stratification and the accumulation of wealth.  

Inspired by a Lotka-Voltera model at the core, Motesharrei et al. [11] develop a 
human population dynamics model by adding accumulated wealth and economic 
inequality. They develop and measure “carrying capacity” and show it to be a poten-
tially practical means for early detection of collapse. When a population surpasses 
the carrying capacity, starvation or migration can threaten to significantly impact 
population levels and rates of change. However, humans can also accumulate wealth 
and then draw down resources when production cannot match consumption needs. 
Empirically, they posit that accumulated surpluses are not evenly distributed 
throughout society. As elites control resources normally, they could leave the mass 
of the population, while producing a portion of generated wealth, with only a small 
portion of it usually at or just above subsistence levels [7][4]. While the Brander–
Taylor model has only two equations, Motesharrei et al’s model adds an additional 
two equations to predict the evolution of nature, accumulated wealth, elites and 
commoners as an interdependent, asymmetric first order system. Their HANDY 
equations are given by: 

 
In this system of equations, the total population is divided between the two varia-

bles, XC and XE, representing commoners and of elites respectively. The population 
grows at a birth rate β and decreases at a death rate α. In their model, β is assumed to 
be constant for both elites and commoners but α depends on wealth. The equation for 

Nature, and accumulated Wealth (we examine other differences in
Section 6.4 of the paper) The HANDY equations are given by:

ẋC ¼ βCxC−αCxC
ẋE ¼ βExE−αExE
ẏ¼ γy λ−yð Þ−δxCy
ẇ¼ δxCy−CC−CE:
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It is to be noted thatαC,αE, CC, and CE are all functions ofw, xC, and xE.
See Eqs. (4) and (6) and Fig. 2a and b.

3.1. Model Description

The total population is divided between the two variables, xC and xE,
representing the population of commoners and of elites. The population
grows through a birth rate β and decreases through a death rate α. β is
assumed to be constant for both Elites and Commoners but α depends
on Wealth as explained below.

In reality, natural resources exist in three forms: nonrenewable
stocks (fossil fuels, mineral deposits, etc.), regenerating stocks (forests,
soils, animal herds, wild fish stocks, game animals, aquifers, etc.), and
renewable flows (wind, solar radiation, precipitation, rivers, etc.). Fu-
ture generations of the model will disaggregate these forms. We have
adopted a single formulation intended to represent an amalgamation
of the three forms, allowing for a clear understanding of the role that
natural resources play in collapse or sustainability of human societies.

Thus, the equation for Nature includes a regeneration term,
γy(λ − y), and a depletion term, −δxCy. The regeneration term has
been written in the form of a logistic equation, with a regeneration fac-
tor, γ, exponential regrowth for low values of y, and saturation when y
approaches λ, Nature's capacity — maximum size of Nature in absence
of depletion. As a result, the maximum rate of regeneration takes
place when y = λ / 2. Production is understood according to the stan-
dard Ecological Economics formulations as involving both inputs from,
and outputs to, Nature (i.e., depletion of natural sources and pollution
of natural sinks) (Daly, 1996; Daly and Farley, 2003). This first genera-
tion of HANDYmodels the depletion side of the equation as if it includes
the reduction in Nature due to pollution.

The depletion term includes a rate of depletion per worker, δ, and
is proportional to both Nature and the number of workers. However,
the economic activity of Elites is modeled to represent executive,
management, and supervisory functions, but not engagement in the di-
rect extraction of resources, which is done by Commoners. Thus, only
Commoners produce.

It is frequently claimed that technological change can reduce resource
depletion and therefore increase carrying capacity. However, the effects
of technological change on resource use are not unidirectional. Techno-
logical change can raise the efficiency of resource use, but it also tends to
raise both per capita resource consumption and the scale of resource ex-
traction, so that, absent policy effects, the increases in consumption
often compensate for the increased efficiency of resource use. These
are associated with the phenomena referred to as the Jevons Paradox,
and the “Rebound Effect” (Greening et al., 2000; Polimeni et al., 2008;
Ruth, 2009). For example, an increase in vehicle fuel efficiency tends
to enable increased per capita vehicle miles driven, heavier cars, and
higher average speeds, which then negate the gains from the increased
fuel-efficiency. In addition, technological advances can enable greater
resource extraction and throughput, which then appears as increases
in the productivity of other factors of production. As Daly points out,
much of the increase in productivity in both agriculture and industry
in the last two centuries has actually come from increased (rather
than decreased) resource throughput (Daly, 1991). A decline in the
price of a resource is usually thought to reflect an increase in the abun-
dance of that resource, but in fact, it often reflects that the resource is
simply being extracted more rapidly. Rather than extend carrying ca-
pacity, this reduces it. Over the long-term, per capita resource-use has
tended to rise over time despite dramatic technological advances in re-
source efficiency. Thus, the sign and magnitude of the effect of techno-
logical change on resource use varies and the overall effect is difficult
to predict. Therefore, in this generation of HANDY, we assume that the
effects of these trends cancel each other out. The model will be devel-
oped further to allow the rates of these technology-induced trends to
be adjusted in either direction.

Finally, there is an equation for accumulatedWealth,which increases
with production, δxCy, and decreases with the consumption of the Elites
and the Commoners, CC and CE, respectively. The consumption of the
Commoners (as long as there is enough wealth to pay them) is sxC, a
subsistence salary per capita, s, multiplied by the working population.
The Elites pay themselves a salary κ times larger, so that the consump-
tion of the Elites is κsxE. However, when the wealth becomes too small
to pay for this consumption, i.e., when w b wth, the payment is reduced
and eventually stopped, and famine takes place, with amuchhigher rate
of death. κ is meant to represent here the factors that determine the di-
vision of the output of the total production of society between elites and
masses, such as the balance of class power between elites and masses,
and the capacity of each group to organize and pursue their economic
interests.We recognize the inherent limitations, in this initial generation
of our model, of holding that balance (κ) constant in each scenario, but
we expect to develop κ further in later generations of HANDY so that it
can be endogenously determined by other factors in the model.

a) Consumption rates in HANDY b) Death rates in HANDY

Fig. 2. Per capita Consumption rates and Death rates for Elites and Commoners as a function of Wealth. Famine starts when C
sx ≤1. Therefore, Com-

moners start experiencing famine when w
wth

≤1, while Elites do not experience famine until w
wth

≤ 1
κ . This delay is due to Elites' unequal access to

Wealth.
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nature includes a regeneration or gain term γY(λ − Y), and a depletion or loss term − 
δXCY. Technological change can make the use of resources more efficient, but it also 
tends to raise both per capita resource consumption as well as resource extraction 
scales. Thus accumulated wealth increases with production, δXCY, and decreases with 
the consumption of the elites and the commoners  

3 An Agent-Based, Complex Adaptive Systems Approach 

While innovating a formal a systems approach for HANDY theory, a limitation of 
Motesharrei et al’s [11] work lacks coupling and interdependence across human 
scales, from individuals to institutions and finally the societal outcomes they gener-
ate. Inspired by Motesharrei et al., our agent-based, complex adaptive systems 
HANDY model uniquely combines the interactive effects and feedbacks between 
individual human agency as well as the macro environmental constraints and oppor-
tunities that change over time for any given society. Decisions by individuals, in-
cluding both elites and commoners, are affected by other individuals, social context, 
and system states, including accumulated wealth and resources. These decisions have 
variegated first and second order effects, given any particular system state or indi-
vidual attributes. Such an approach attempts to increase both theoretical and empiri-
cal verisimilitude for some key elements of complexity processes, emergence, con-
nectivity, interdependence and feedback [10] found across all scales of development. 

We instantiate a non-cooperative, socio-economic Prisoner’s Dilemma (PD) 
transaction game given agent i’s attribute vector (Ai) of individual agent attributes 
similarity to agent j (Aj) for any Aij pairs. The motivation behind this is that individ-
uals are more likely to interact, engage and conduct transactions with other agents of 
similar norms [14] and produce different co-evolutionary behavior via frequency and 
rate dynamics [9]. To allow complexity, nonlinear and emergent behavior, we first 
randomly choose 50% of spatially proximal agents as sources who can choose a 
partner at each iteration t. The remaining targets are chosen by other agents based on 
symmetric preference rankings and asymmetric neighborhood proximity distribu-
tions. Following Abdollahian et al. [1-3] and Yang [38], we explore communications 
reach, social connectivity and technology diffusion that constrains the potential set of 
Aij game pairs through talk-span.  

We specifically model socio-economic transaction games as producing either pos-
itive or negative values to capture both upside gains or downside losses. Subsequent-
ly, Aij games’ Vij outcomes condition agent Wi

t+1 values, modeling realized costs or 
benefits from any particular interaction. The updated Wi

t+1 = Wi
t + Aij game payoff for 

each agent subsequently gets added to the individual’s attributes for the next itera-
tion. We then repeat individual endogenous processing, aggregated up to society as a 
whole and repeat the game processes for t+n iterations.  

Aggregated wealth gets transformed into macro-society levels and impacts nature 
consistent with standard ecological economics as involving both inputs from, and 
outputs to nature, through depletion of natural sources and carrying capacity. The 
sum of all prior individual behavioral histories, evolutionary through iterations, does 
contribute to each individual and societal current states as an initial effort at a scale 
integrated framework. Thus agents simultaneously co-evolve as strategy pair out-
comes at t to impact Wi at t+1, thus driving both positive and negative feedback pro-
cess through t+n iterations. These shape Ai attributes which spur adaptation to a 
changing environment. Feedback into subsequent Aij

 game selection networks and 



strategy choice yields a complex adaptive system representation across multiple 
scales. 

The resulting networks provide a rich dataset ripe for spectral analysis. By con-
sidering spectral gap metrics, the characteristic times between stable periods can be 
regressed against predictive qualities of the socio-economic transaction games net-
works. Differing slightly from Neal [12], specifically this analysis proceeds on the 
basis of using preselected values of the maximum eigenvalue gap max for a specific 
t, the average eigenvalue gap, and the median eigenvalue gap, measured after a 100 
period burn-in without regard to the eventual end of the disorder period. This is as 
opposed to using the maximum value of any of these measures observed during the 
disorder period, as doing so would bias longer disorder n(t) periods towards higher 
maximum observations simply by means of more draws.  

 

 
Fig. 1. Thresholds Comparasion 
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Figure 2.8: First row: Time evolution of synchronization of GDP for two networks,
defined by w

⇢

= 50 and by thresholds ⌧ = 0.976, 0.99, respectively. Second row:
Index of eigenvalues from the Laplacian, in ascending order, against the inverse of
the eigenvalues themselves, from the Laplacian matrix derived from the adjacency
matrix from period Q1, 2005 (left), and Q4, 2007 (right), for the same respective
thresholds ⌧ . Third row: Laplacian information for Q4, 2011 (left) and Q4, 2012
(right).
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Above we detail a generic example of the type of information and results such 
analysis can provide, examining whether or not the eigenspectrum of the Laplacian 
matrix of the system under examination is able to predict the sequence of synchroni-
zation over the period of examination. Fig.1 [13] gives two such examples of thresh-
olds which generate a monotonically decreasing number of separate components 
over time. The top row of Fig. 1 examines the time evolution Phase of synchroniza-
tion of GDP for two networks, defined by thresholds of 0.976, 0.99, respectively. 
The second row displays the index of eigenvalues from the Laplacian, in ascending 
order, against the inverse of the eigenvalues themselves, from the Laplacian matrix 
derived from the adjacency matrix. 
 

4 Methodology 

Utilizing this agent-based version of HANDY, we specify the formation of an arbi-
trary (but substantial) level of cooperative links as the designator of a synchronized 
state in the model.  This follows intuitive logic as well as the general incentive struc-
ture of the game underlying interactions in our extension of HANDY.  Alternatively, 
the emergence of a large network of tributary relationships, akin to a stable and ef-
fective resource gathering hierarchy, could equally well be the expected, synchro-
nized end-state given different payoff structures in the fundamental PD game.   

Fig. 2 shows a sample time series charting the evolution of the number of coop-
erative links over the course of a particular simulation run.  It is easily observed to be 
an increasing, but non-linear, process.  The time occurring before this synchroniza-
tion is achieved is denoted the disorder period. 

 
Fig. 2. Sample Time Series 
 

Several agent-level variables offer a potential basis for the creation of the dynam-
ic connectivity matrix.  This is a realistic analogy to real life, where individual popu-
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lations, corporations, species, etc, can be characterized by any of a variety of poten-
tial metrics.  In this case, we have chosen to measure connectivity on the basis of 
societal wealth as captured in both the original HANDY model and our extension, as 
this variable figures heavily in the strategy selection process in our model. 

As described above, a burn-in period is allowed to take place before variables are 
utilized.  Then, pair-wise correlation statistics ρij are collected. Following Arenas et 
al [4], the dynamic connectivity matrix is constructed such that 

  
From this adjacency matrix, the Laplacian matrix L is calculated such that indi-

vidual entries are defined as Lij = kiδij - aij, where ki is the degree of node i (that is, 
the number of edges it has in the network described by the adjacency matrix), δij is 
the Kronecker operator (set to 1 for non-zero elements of the original adjacency ma-
trix), and aij is the entry from the original adjacency matrix. 

The penultimate step in data capture, for the purpose of moving on to a statistical 
analysis of the explanatory power of the eigenspectrum over population dynamics 
and synchronization in our extension of HANDY, is the calculation of the spectrum 
S(L) itself.  The spectrum is traditionally presented in order from largest to smallest 
eigenvalue.  From this vector, the gaps in the spectrum – and the maximum, mean, 
and median gaps – are recorded for every simulation from the single chosen Laplaci-
an of the dynamic connectivity matrix. 

5 Results 

Holding instantiation parameters constant, we extract wealth figures and connectivity 
matrices over 300 runs of our extended model.  Various spectral measures are tested 
for explanatory power with respect to the disorder period.  One variable, the maxi-
mum gap between eigenvalues in the eigenspectrum of the Laplacian, is highly sig-
nificant.  However, overall predictive power of the disorder period in this model 
using spectral information alone is very low.   

As seen in Table 1 below, the signs of the maximum and mean eigenspectrum 
gap coefficients are positive, while the median gap is negative.  The significant coef-
ficient for the maximum eigenspectrum gap can be interpreted as implying an addi-
tional 70 periods of disorder before cooperative synchronization for an increase of 1 
in the largest gap between ordered eigenvalues.  In the theoretical physics literature, 
similar relationships between spectral gaps and frustration time have been observed; 
in those works, this phenomenon is directly related to the distance, in degrees, be-
tween frustrated communities of oscillating elements; the larger the gap, the less 
likely the random (or, random-like) fluctuations of one element are to coincidentally 
match those of another community and reinforce the ensemble cycle.  In the case of 
some parsimonious models, this process can be analytically explained by manipula-
tion of the system’s differential equations near equilibrium.   

A similar process may be at work here, although the underlying behavior is 
much more complex than that of a simple oscillator, the implicit community struc-
ture is also likely to be more complex than the highly stylized hierarchies studied in 
that literature, and analytical solutions are all but infeasible.  While the statistical 
significant seen here is encouraging, the explanatory power is essentially zero. 



 
Table 1. Threshold 200 individual result. 
 

 Dependent variable: 

 Disorder Period 

 (1) (2) (3) 
Max Eigen Gap 70.17***   
 (24.81)   

Mean Eigen Gap  906.45  
  (597.14)  

Median Eigen Gap   -732.62 
   (591.34) 

Constant 206.49*** 157.66* 302.87*** 
 (34.48) (93.22) (12.66) 

Observations 300 300 300 

R2 0.03 0.01 0.01 

Adjusted R2 0.02 0.004 0.002 

Note: * p<0.1; ** p<0.05; *** p<0.01. 
 

Table 2, below, details the results of utilizing different combinations of the mean 
and median spectral gap measures with the maximum gap measure.  The maximum 
gap metric remains significant, the other variables remain insignificant, and the R2s 
remain at essentially zero.  Results from additional experiments utilizing spectral 
information from connectivity matrices created earlier in simulation runs contained 
no statistically significant information and have been omitted.  

 
Table 2. Threshold 200 multivariate result. 
 
 Dependent variable: 

 Disorder Period 

 (1) (2) (3) 
Max Eigen Gap 67.00*** 66.61*** 61.07** 
 (28.09) (25.35) (29.17) 

Mean Eigen Gap 162.05  263.63 
 (669.66)  (683.34) 

Median Eigen Gap  -417.85 -463.90 
  (597.69) (610.34) 

Constant 185.54** 213.91*** 180.63* 
 (93.23) (36.10) (93.52) 

Observations 300 300 300 

R2 0.03 0.03 0.03 

Adjusted R2 0.02 0.02 0.02 

Note: * p<0.1; ** p<0.05; *** p<0.01. 



 
Table 3 features analysis of data generated under slightly different circumstanc-

es.  Simulations in this case were run until the relationships between artificial socie-
ties grew to 300 cooperative links; this slightly stronger selection of a synchroniza-
tion threshold means longer run periods, generally. (See Fig. 3, below.)  As such, we 
study information from dynamic connectivity matrices calculated at period 100 as 
well as 400.  Spectral information from the earlier connectivity matrix is essentially 
null of statistical significance and is not displayed.  The resulting spectral infor-
mation from the connectivity matrix at period 400 is similar to that show in Table 1; 
statistically significant in some cases, but void of explanatory power. 

 
Table 3. Threshold 300 individual result. 
 
 Dependent variable: 

 Disorder Period 

 (1) (2) (3) 
Max Eigen Gap 168.85***   
 (32.90)   

Mean Eigen Gap  1917.68***  
  (431.65)  

Median Eigen Gap   -394.75 
   (415.14) 

Constant 567.77** 484.77*** 728.27*** 
 (31.77) (54.71) (9.74) 

Observations 300 300 300 

R2 0.08 0.06 0.003 

Adjusted R2 0.08 0.06 -0.0003 

Note: * p<0.1; ** p<0.05; *** p<0.01. 
 

We then extend our regression model to incorporate a current trend and level 
component of the eventual dependent variable (number of cooperative connections) 
at t = 400, in order to increase explanatory power and study potential uplift from the 
spectral measures. 
 

 
Fig. 3. Threshold 200 and 300 comparison. 
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The results can be seen in Table 4.  Including the level and trend of cooperative 

connections alone lends an R2 of 11%; however, including different combinations of 
the spectral metrics can provide a 9 – 14% uplift.  This is very promising, as trend 
and level as constructed here are very rudimentary attempts at time series models, 
and potentially greater uplift could be possible in conjunction with more sophisticat-
ed curve fitting models. 
 
Table 4. Threshold 300 multivariate result. 
 
 Dependent variable: 

 Disorder Period 

 (1) (2) (3) (4) 
Max Eigen Gap 175.36***  109.04***  
 (30.80)  (33.42)  

Mean Eigen Gap  2622.20*** 1971.12***  
  (404.42) (445.21)  

Level -2.89*** -3.38*** -3.30*** -2.80*** 
 (0.45) (0.45) (0.44) (0.47) 

Trend 0.01*** 0.02*** 0.02*** 0.01*** 
 (0.003) (0.003) (0.003) (0.003) 

Constant 732.30** 607.17*** 578.38*** 892.56*** 
 (42.30) (53.90) (53.78) (33.20) 

Observations 300 300 300 3200 

R2 0.20 0.22 0.25 0.11 

Adjusted R2 0.19 0.060.22 0.24 0.11 

Note: * p<0.1; ** p<0.05; *** p<0.01. 
 

Also promising, comparing across the models in Table 1 and Table 3, is the con-
sistency of the signs of the coefficients under the different instantiations.  The mag-
nitudes, for Max and Mean Eigen gap variables, are, at least, relatable. 

6 Discussion 

In the context of sustainable development, the complex adaptive systems framework 
can help address the coupling of nature constraint and opportunity with population 
dynamics and individual agency. 

Taking our previous research a step further with the introduction of spectral anal-
ysis of the social network fabric created by the game, we contribute both to the un-
derstanding of complex, strategically driven economic societies, as well as to the 
understanding of the value of theoretical physics methods in a new domain. The 
potential savings to computational costs in the pursuit of understanding complex 
games are potentially substantial and could represent a significant advance in the 
practice of artificial economics. 



Furthermore, the above research gets a set of questions of fundamental interest to 
scientists empirically researching complex systems across a number of domains – 
given an unknown process that seems to be trending towards synchronization, how 
might we anticipate the likely period of frustration before such synchronization oc-
curs?  By utilizing our version of the HANDY model and asking this question at the 
same point in “time” in each simulation, with no foreknowledge of the eventual oc-
currence of synchronization, we realistically simulate this challenge and take a small 
step towards discovering useful information for this task from the spectral gap of the 
Laplacian of the dynamic connectivity matrix, and also towards forecasting even 
fuzzy definitions of synchronization in complex systems, where explicit characteri-
zation and analytical solution is infeasible. 

Multiple outstanding and significant questions remain.  For example, the con-
sistency of coefficient signs across different initial parameter settings is of great 
interest.  Even more trivial questions, such as the ability of spectral information to 
predict synchronization when extracted from dynamic connectivity matrices at dif-
ferent points in time, warrant further exploration.  Obviously, the suitability of other 
variables characterizing the individual entities could be explored exhaustively, in the 
context of both intuition as well as the known, functional qualities of these variables 
as they describe the behavior of complex systems (but where their cyclical tenden-
cies still resist analytical solution).  Vectors of information from successive spectral 
analyses of evolving dynamic connectivity matrices, from one or possible more edg-
es utilizing multiple variables, interactive terms using spectral information, and utili-
zation of spectral information in non-linear models, such as neural networks, are all 
suitable subjects worthy of further research.  These inquiries could be conducted on 
the basis of an underlying data generating process from any of the vast number of 
agent-based models emerging across various disciplines. 

As always, one of the few significant obstacles to this line of research is computa-
tional expense; however, the flip side of such large parameter spaces is a very rich 
and seemingly never ending line of research avenues! 
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