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Abstract. This study computationally examines whether keeping on
choosing the same number is really successful in small-sized lowest unique
integer games (LUIGs). In a LUIG, N (> 3) players submit a positive in-
teger up to M and the player choosing the smallest number not chosen by
anyone else wins. For this purpose, the author considers four LUIGs with
N = {3,4} and M = {3,4} and uses the behavioral data obtained from
the laboratory experiment by Yamada and Hanaki (Physica A, in press).
For computational experiments, the author estimates the parameters of
typical learning models for each subject and then pursues evolutionary
competitions. The main but preliminary findings are in the following:
First, sticking behaviors such as Level-1 and Level-2 computationally
perform well as well as experimentally. Second, as the generations go by,
the frequency of average changes decreases while the game efficiency dif-
fers from the game setup, namely improved in three-person LUIGs but
not in four-person LUIGs.

1 Introduction

In social and economic systems, individuals, groups, firms and so on make their
decision based on the rules they should follow. For example, call market, contin-
uous double auction and other trading mechanisms are seen in financial markets.
Or, first- and second-prize styles are usually employed in auction markets. On
the other hand, new types of social and economic systems have been proposed
and some of them are introduced in practice. Among these, Swedish lottery
(SL) game Limbo and Lowest/Highest Unique Bid Auctions (LUBA /HUBA)
like the Auction Air or Juubeo websites are one of the new systems where the
participants are required to be unique by taking risks of not being so.

Lowest Unique Integer Games (LUIGs) are highly simplified versions of real
systems. In a LUIG, N (> 3) players simultaneously submit a positive integer
up to M. The player choosing the smallest number that is not chosen by anyone
else i s the winner. In cases where no player chooses a unique number, there is
no winner. For instance, suppose there is a LUIG with N = 3 and M = 3. There
are three players, A, B, and C, who each submit an integer between 1 and 3. If
the integer s chosen by A, B, and C are 1, 2, and 3, respectively, then A wins the
game. If the integers chosen by A, B and C are 1, 1, and 2, respectively, then C



is the w inner. And, as noted, if all of them choose the same integer, there is no
winner.

Hence, LUIGs are more tractable than the above real systems because the
exact numbers of players or participants and the options are known for their
decision-making. In addition, unlike with LUIGs or SL, in LUBA/HUBA sce-
narios, a winner has to pay the amount s/he bids in exchange for the item being
auctioned. In this sense, these types of real systems have been attracting much
attention recently from scholars of various disciplines [3,4,6,8,9,11,12,14-17,
19]. While the studies mentioned investigate these related systems theoretically
and empirically, experimental studies on LUIGs and related systems are still
scarce except for Ostling et al. [13] and Ohtsubo et al. [14]. Yamada and Hanaki
experimentally study LUIGs to determine if and how subjects self-organize into
different behavioral classes to obtain insights into choice patterns that can shed
light on the alleviation of congestion problems [18]. They consider four LUIGs
with N = {3,4} and M = {3,4}. They find that (a) choices made by more than
1/3 of subjects were not significantly different from what a symmetric mixed-
strategy Nash equilibrium (MSE) predicts; however, (b) subjects who behaved
significantly differently from what the MSE predicts won the game more fre-
quently. What distinguishes subjects was their tendencies to change their choices
following losses.

This study extends their past experimental study to check whether such
successful or unsuccessful behaviors are always observed no matter whom their
opponents are. For this purpose, the author pursues computational approach
in line with the work by Linde et al. [10] who carried out strategy experiment
for Minority Game (MG) of five and then evolutionary competition using the
submitted strategies. Here, several typical learning and strategic thinking models
are employed to express the behaviors of subjects obtained in the laboratory
experiment. Then, the one with the best likelihood for every subject in each game
setup is used for computational experiments. Finally, by making comparison
between the work by Linde et al. and this one, the author discusses the structural
and behavioral differences between MGs and LUIGs because both the two games
are sometimes considered as similar.

The remainder of this paper is organized as follows: The next section defines
lowest unique integer game. Section 3 summarizes the laboratory experiment by
Yamada and Hanaki with the main results. Section 4 explains the learning models
used for computational experiments and then presents a couple of preliminary
results. Section 5 concludes.

2 Lowest unique integer game

There are N players who each choose one positive integer from 1 to M (> 1). All
of them know this setup. The player who submits the smallest integer that is not
chosen by anyone else is a winner. The winner receives a positive payoff, usually
normalized 1, and the losers do zero. If there is no uniquely chosen integer, all
players become losers.



Table 1. Symmetric mixed strategy equilibrium in LUIG

NM 1 2 3 4

3 30.464 0.268 0.268

3 40.458 0.252 0.145 0.145
4 30.449 0.426 0.125

4 40.448 0.425 0.126 0.002

Table 2. Two games played in each session

Session Game 1 Game 2
1 (N, M) = (3,3) (N, M) = (3,4)
2 (N, M) = (3,4) (N, M) = (4,4)
3 (NaM)—(4v4) (N7M):(473)
4 (N,M)=(4,3) (N,M)=(3,3)
5 (N, M) = (3,4) (N, M) = (3,3)
6 (NaM)—(Bv?’) (N7M):(473)
7T (N,M)=(4,3) (N,M) = (4,4)
8 (N, M) = (4,4) (N, M) = (3,4)

Here the author considers LUIG with N > 3 and M > 3. In case of bi-matrix
game, there are three equilibria, (1) both players choose 1 and (2) one player
chooses 1 and the other does 2. But, since one never makes one’s opponent a
winner so long as s/he keeps on choosing 1 [13], this kind of game is not worth
investigating.

Then, each game form has a unique mixed strategy equilibrium. Table 1 gives
the mixed strategy equilibria in cases of (N, M) = (3, 3), (3,4), (4,3), and (4,4).1

3 Laboratory experiment

Yamada and Hanaki considered four LUIGs with N € {3,4} and M € {3,4} [18].
Each subject played two separate LUIGs. They changed either N or M, but not
both, between the two games a subject played. Thus, there were totally eight
pairs of games as shown in Table 2. Each LUIG had 50 rounds with the same
group of subjects. There was a non-binding time limit of 15 seconds for choosing
an integer in each round. After every subject in the group made his/her choice,
the subjects were informed of the result of the round. The feedback consisted
of whether a subject was a winner or not, in addition to the winning number
for the round. Subjects were informed that the winning number was set to zero
when there was no winner.

Once the 50 rounds of the first LUIG were completed, subjects were re-
matched to form another group to play the second LUIG for 50 rounds. Subjects

1 Ostling et al. have a succinct algorithm to calculate mixed strategy equilibrium in
this setup [13].



were initially told that they would play two LUIGs with 50 rounds each, but were
not informed about the exact game (i.e., N and M) until the start of each game.
At the beginning of each game, they were reminded that the other subjects in
their group would remain the same during the 50 rounds.

Subjects were paid according to the outcome of one randomly chosen round
from each game. The winner of a game received 20 euros in addition to a par-
ticipation fee of 10 euros. Thus a subject could earn a maximum of 50 euros.
Subjects were paid in cash at the end of the experiment.?

Computerized experiments, implemented using z-Tree [7], took place in Jan-
uary and February 2014 at the Laboratoire d’Expérimentation en Sciences So-
ciales et Analyse des Comportements (LESSAC), Burgundy School of Business
(Dijon, France). 192 students who had never experienced a LUIG experiment
participated. There were 24 students in each of the 8 sessions as listed in Ta-
ble 2. A session lasted between 65 and 85 minutes. Out of our 192 subjects, 11
earned 50 euros and 67 earned 30 euros. The remaining 114 subjects earned only
the participation fee of 10 euros.

Table 3 shows the relative frequencies of the observed winning numbers in
the four LUIGs. The authors are pooling all the groups that played the relevant
LUIG. For each LUIG, the predicted relative frequencies under the MSE are
also reported. Recall that a winning number “0” represents a case without any
winner. For three out of four LUIGs, namely, LUIG33, LUIG43, and LUIG44,
the observed frequencies of winning numbers are very similar to what the MSE
of each game predicts. The major difference between the prediction of the MSE
and the experimental outcome is observed in LUIG34 in which “4” was much
less frequently the winning number in the experiment compared to the MSE.

Table 3 also reports the performances of the subjects and their behavioral
types based on two criteria: the relative frequencies of chosen numbers (‘choice’)
and the frequency of changing one’s choices from one round to another (‘change’).
For the choice criterion, subjects are considered to be MSE subjects if their
choice frequencies were not statistically different, at 5% significance level, from
those predicted by the MSE according to Kolmogorov-Smirnov tests. Otherwise,
they are considered to be non-MSE subjects. For the change criterion, subjects
are considered to be MSE subjects if their frequency of changing their choices
between two consecutive rounds lies within the 95% confidence interval predicted
by the MSE. Otherwise, they are considered to be non-MSE subjects.

As one can note from the table, while most of the subjects who are classified
as non-MSE under the choice criterion are also classified as non-MSE under the
change criterion, this is not the case for those who are classified as MSE under
the choice criterion. Between 35 and 45% of subjects classified as MSE subjects
by the choice criterion did not change their choices between two consecutive
rounds as frequently as the MSE predicts.

2 The English translation of the experiment’s instructions is available upon request.



Table 3. Relative frequencies of observed winning numbers and summaries of the

performances of the subjects

a. LUIG 33

b. LUIG 34

Expr. MSE

Expr. MSE

Winning number

Winning number

0 12.88% 13.84% 0 8.88% 11.80%

1 40.50% 39.99% 1 43.31% 40.38%

2 26.88% 23.09% 2 29.18% 22.20%

3 19.75% 23.09% 3 15.94% 12.81%

4 2.69% 12.81%
Average #wins 14.52 Average #wins 15.19
Average #changes 21.51 Average #changes 21.02
Cor(#wins, #changes) —0.436 Cor(#wins, #changes) —0.305

#Subjects #Subjects
MSE (choice) 29 MSE (choice) 27
MSE (change) 0 MSE (change) 3
MSE (choice + change) 42 MSE (choice + change) 33
Non-MSE 25 Non-MSE 33
c. LUIG 43 d. LUIG 44
Expr. MSE Expr. MSE

Winning number
0

1
2
3

Average #wins
Average #changes
Cor(#wins, #changes)

#Subjects

MSE (choice)

MSE (change)

MSE (choice + change)
Non-MSE

33.33% 32.91%
27.50% 30.09%
32.17% 28.60%

7.00% 8.40%

8.33
20.53
—0.320

32

4
39
21

Winning number

0 27.17% 32.63%
1 32.42% 30.17%
2 30.41% 28.63%
3 8.33% 8.47%
4 1.67% 0.01%
Average #wins 9.10
Average #changes 21.18

Cor(#wins, #changes) —0.293

#Subjects

MSE (choice) 19
MSE (change) 4
MSE (choice + change) 37
Non-MSE 36




4 Computational Evolutionary Competition

In the laboratory experiment by Yamada and Hanaki, they observed that the
number of wins for each subject was negatively correlated to that of changes in
every game setup. That means, it may be fine to keep choosing a number to
win LUIGs. But, it was not at that moment sure whether such sticking behav-
iors were really successful. Here, a computational experiment about evolutionary
competition is employed to see the effectiveness of such behaviors. For this pur-
pose, several typical learning models are employed and the parameters of the
models are then estimated for the experiment.

4.1 Learning models
The learning models employed here are as follows:

— Adaptive learning (AL)
An AL player i has a propensity af(t) for number k (k = 1,--- , M) at
the beginning of round t. Before the start of a game, she is assumed to
have the same non-negative propensities for all the possible integers, namely
al(0) = a¥(0) > 0 for j # k.

At every round, she chooses one integer according to the following exponen-

tial selection rule
pk(t) _ eXp()‘a . af(ﬂ) (1>
[3 - M ’
Yw—1exp(Aa - af (1))
where pf(t) is 4’s selection probability for integer £ at round ¢, and A, is a
positive constant called sensitivity parameter ([1,5]).
After a round, propensities are updates as

a;(t+1) = (1 ¢a)af(t) + Lk, ()Yl (2)

where ¢, and 1, are positive constants called learning parameter ([1,5]),
11 is the indicator function that takes value 1 if k = s;(t), and 0 otherwise.
Here s;(t) is the number that player i has actually chosen at round ¢, and R
is the payoff received. Note that the model is called ‘cumulative’ if ¢, = 1
and ‘averaging’ if 1, = 1 — ¢,.

— Naive imitation (NI)
Players using this model follow a winning number regardless of whether they
are a winner or not. When “no-winner” situation happens, they choose the
preceding number.
While the selection rule is the same as that in AL model, the updating rule
is expressed in the following:

af(t + 1) = (1 - (bﬂ)a’?(t) + 1{k,v(t)}wnR

where v(t) is a winning number at round t¢.
— Level-1 thinking
Level-1 player always chooses 1.




Table 4. The number of subjects

AL NI Levell Level-2 Others

LUIG 33 58 35 1 2 0
LUIG 34 55 40 1 0 0
LUIG 43 56 38 1 1 0
LUIG 44 40 52 2 1 1

— Level-2 thinking
Level-2 player always chooses 2.

— Other sticking behavior
Players using this model always chooses only one number, but 3 or larger.
Since level-k (k > 0) players cover one of the two numbers, 1 and 2, sticking
to 3 or larger cannot be dealt with. Accordingly, such players are classified
into this model.

To determine a learning model for every subject, the author assumes the fol-
lowing points: First, all initial propensities in Game 1 are set to zero, namely the
subjects did not have any prior belief to others or view to the game. Second, the
propensities of every subject at the beginning of Game 2 succeed to those at the
end of Game 1. If the upper limit is different from the games, the corresponding
propensities are not used (M = 4 in Game 1 — M = 3 in Game 2) or set to zero
(M =3in Game 1 - M = 4 in Game 2). Then, the learning model with the best
log likelihood is employed for the simulation®. Note that the subjects who did
not change at all in a game belong to one of the three models, Level-1, Level-2
or other sticking behavior regardless the log likelihood. Table 4 summarizes the
number of subjects for each learning model in each LUIG.

4.2 Setup

The author develops the following evolutionary competition algorithm: Every
strategy 4 initially has the same existence fraction w(i,1) = 1/96 for each LUIG.
A generation has 5000 LUIGs each of which has 100 rounds. In each game,
three or four learning models are randomly selected in accordance with the
existence fraction. Therefore, one learning model is expected to play the games
approximately 100 times or more.

For each learning model i, the average number of wins it earned is calculated,
averaged over all simulations in a single generation. It is denoted as P(¢, g). Also,
the average number of wins for all the learning models is calculated in the same
way. It is denoted as Q(g).

After each generation of 5000 LUIG games, the weights of the different learn-
ing models are updated on the basis of how well they played compared to the
whole population of learning models. The updating rule is determined as follows:

w(i, g + 1) = max{(1 + 0[P (i, g) — Q(g)])w(g,),0}

‘optim’ function in R is used for estimation.



where § is selection parameter taking a positive value. If a learning model per-
forms better in a generation, its fraction increases. On the other hand, if it
performers worse than average, such learning strategy becomes extinct, namely
w(i,g+ 1) = 0. The new fraction is set to

. w(i,g+ 1)
w(it,g+1) = =——F """ .
ot =S wig+ 1)
The experimental setup is similar to that in Linde et al. [10], namely, 10
simulation runs for each LUIG, each of which has 500 generations. The selection
parameter 9§ is fixed at 0.05.

4.3 Results

Figure 1 shows what kind of estimated learning models survive for each LUIG.
Each line means the average value over the 10 simulation runs. The learning
models with 10 or more agents at the end of the simulations on average are
given. Only a few estimated strategies eventually survived. In particular, there
are always one or two Level-1 subject(s) in each LUIG. The next one is that
adaptive learning models seem to perform better than naive imitation models.

The point the author should see is whether the subjects with surviving learn-
ing models played well in the laboratory experiment. Indeed, p-values of Mann-
Whitney test w.r.t. the number of wins and changes show that the number of
changes for the surviving subjects is significantly less frequent than the others
(0.016 for LUIG 33, 0.269 for LUIG 34, 0.338 for LUIG 43 and 0.024 for LUIG
44) meanwhile in some setup that does not always hold for the number of wins
(0.020 for LUIG 33, 0.003 for LUIG 34, 0.007 for LUIG 43 and 0.004 for LUIG
44). To summarize, sticking behavior is more likely to win more and eventually
survive in small-sized LUIGs.

Next, Figure 2 displays the time series plot of the average game efficiency
(situations where there is a winner) and the average frequency of changes. The
average number of changes steadily decreased over the generations in all LUIGs
because only a few sticking behaviors were successful in this competition. On
the other hand, there is an apparent difference between three-person LUIGs and
four-person LUIGs; The game efficiency was slightly improved in three-person
LUIGs meanwhile those were not in four-person LUIGs. Such a difference stems
from the set of asymmetric pure strategy equilibria listed as follows:

— Three-person LUIGs
{1,1,2}, {1, 1,3}, {1, 1, 4}, {1, 2, 2}, {1, 2, 3}, {1, 2, 4}, {1, 3, 3}, {1, 3,
4}, {1, 4, 4}

— Four-person LUIGs
{1, 1, 1, 2}, {1, 1, 2, 2}, {1, 1, 2, 3}, {1, 1, 2, 4}, {1, 2, 2, 2}, {1, 2, 2, 3},
{1, 2,2, 4}, {1, 2, 3,3}, {1, 2, 3,4}, {1, 2, 4, 4}, {1, 3, 3, 3}, {1, 3, 3, 4},
{1, 3, 4, 4}, {1, 4, 4, 4}



# of agents # of agents
0 30

Adaptive learning (cumulative)

Adaptive learning (cumulative) PR — (phi = 0.073, lambda = 1.790) ~——,
60 (phi =0.103, lambda = 5.069) ™~/ 2 7
/f Naive imitation (cumulative) Level-1 f
50 ; (phi = 0.005, lambda = 14.247) p
j 2 e
! Adaptive learning (averaging)
20 [ (phi = 0.180, lambda = 14.359)

Naive imitation (averaging)

Level-1
v bvnd
e 10

TP v
s

0
Generation Generation

a. LUIG 33 b. LUIG 34

# of agents # of agents
45 16

Adaptive learning (cumulative)
(phi =0.015, lambda = 1.444) ~~__

14 Level-2 —— .

30 Adaptive learning (cumulative)
(phi = 0.009, lambda = 0.766)

Adaptive learning (cumulative)
(phi = 0.009, lambda = 0.752)

Level-1

Generation Generation

c. LUIG 43 d. LUIG 44

Fig. 1. Time series plot of the existence of agents for all agents over 10 simulation runs.
The agents with 10 or more populations at the end of generation 500 are introduced
with the estimated parameters.

Among these asymmetric pure strategy equilibria, the one, {1, 1, 2, 2}, is of
particular importance because only this equilibrium does not have a winner.
Hence, once this situation is reached, it is impossible to deviate, no-winner easily
continues.

4.4 Discussion

LUIGS are sometimes considered as similar to MGs in that players are asked to
behave differently from the others. The major differences are: (1) LUIGs have two
or more options while MGs have only two, (2) Only one player can win in LUIGs
while at most (N—1)/2 players can win in MGs, (3) The unique symmetric mixed
strategy equilibrium depends on both the number of players and that of options
in LUIGs. Yet, in MGs, choosing an option with equal probability, namely 0.5,
always holds for MGs regardless of the number of players.

Having in mind the above similarities and differences, the author is going
to see the results of evolutionary computation for MG of five by Linde et al.
briefly and then discuss behavioral and constructional differences between the
two games.
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Fig. 2. Time series plot of average numbers of wins and changes for all agents over 10
simulation runs

Linde et al. hold a strategy experiment which consists of five rounds [10].
In each round, the subjects were asked to (improve and) submit their strategy
for 100-period MG of five. The information for decision-making is whether s/he
changed his/her option and the number of players with his/her option for each
of the last five periods. Based on them, s/he writes a list of IF-THEN statements
with probabilities to change his/her option. After computational experiments for
all the possible combinations are pursued, the subjects receive the information
about the average points earned for improving the strategies.

In their experiment, totally 42 subjects participated and the number of
unique strategies classified was 107. Using the strategies, Linde et al. conducted
another computational experiments, evolutionary computation. Their main re-
sults are: (i) Only four of 107 strategies survived. (ii) The surviving strategies
rarely change, but occasionally do no to get stuck in losing situations. (iii) “Never
change” strategy was one of the four surviving ones, but its performance is not
so good as the other three. (iv) As the generations go on, the average frequency
of changing options decreases and the game efficiency improves towards the full-
mark, 40%.

Compared to the results in Section 3, two substantial differences between
LUIGs and MGs can be addressed: First, sticking behavior performs well in



LUIGs, but not so in MGs. In other words, in MGs, taking into account the
situations s/he faces is necessary to play well in MGs albeit the strategy does
not need frequent changes. Second, cooperative behavior improves the game
efficiency in MGs but pure competitive aspect of LUIGs does not yield such a
situation. In particular, the game efficiency in four-person LUIGs deteriorated
because of the asymmetric pure strategy equilibrium, {1,1,2, 2}.

5 Concluding Remark

This study examines what kind of behavioral models are successful in small-sized
lowest unique integer games and discusses the differences between LUIGs and
MGs by evolutionary competition approach. The behavioral models are obtained
by estimating the parameters from the behavioral data in the laboratory exper-
iment by Yamada and Hanaki [18]. Then computational experiment in line with
the work by Linde et al. [10] is pursued. The main but preliminary findings are
in the following: First, sticking behaviors such as Level-1 and Level-2 perform
well both in evolutionary competition and in laboratory experiment. Second, as
the generations goes by, the frequency of average changes decreases while the
game efficiency differs from the game setup, namely improved in three-person
LUIGs but not in four-person LUIGs. This stems from the structure of asym-
metric pure strategy equilibria. Third, successful strategies in MGs take into
account the situations to avoid getting stuck and cooperative aspect eventually
improves the game efficiency. This is not computationally observed in LUIGs.

Since this study deals with the estimated learning models, unlike in Linde et
al., there may be better models for some of the behavioral data in laboratory
experiment. Hence, as done by Linde et al., it is necessary to conduct another
laboratory experiment where subjects are asked to elicit their decisions to play
LUIGs. Another future work includes larger-sized experiment to see whether
similar behaviors and game dynamics are also observed. This comes form the
empirical finding by Ostling et al. [13].
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