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Abstract

We continue our development of an agent-based implementation of the Coconut Model by Peter Diamond and

report on the achievements. While dealing with fixed but heterogeneous strategies in previous work we now

concentrate on learning dynamics. Namely, we introduce temporal difference learning as a way to procedurally

solve the optimization problem as posed in the original paper. We show that the model with this kind of adaptive

agents converges to a considerable degree to the original theoretical results for an infinite and homogeneously

adapting population. Conclusions regarding non-equilibrium trajectories and equilibrium selection can be drawn

from that. Having an agent-based baseline well established, we introduce a model extension with two goods that

must be combined to a third elaborate product for consumption. First experiments reveal that rich behavioral

regimes emerge in such a setting.

1 Introduction

Imagine an island with N agents that like to eat coconuts. They search for palm trees
and harvest a nut from it if the tree is not too tall, meaning that its height does not
exceed an individual threshold cost (ctree < ci). However, in order to consume the nut
and derive utility y from this consumption agents have to find a trading partner, that
is, another agent with a nut. Therefore, the agents have to base their harvest decision
now (by setting ci) on their expectation to find a trading partner in the future. Or, less
metaphorically, agents are faced with production decisions that have to be evaluated
based on their expectations about the future utility of the produced entity which in turn
depends on the global production level via a trading mechanism. For this reason, the
Coconut Model is useful not only for the incorporation of heterogeneity [2], but also for
the analysis of adaptive agents that – rationally or not – have to form expectations about
the future system state in order to evaluate their decision options.
In the original papers [6, 5] this problem of inter-temporal optimization is formulated
using dynamic programming principles and the Bellmann equation in particular. The
author(s) arrive at a differential equation (DE) that describes the evolution of the cost
threshold along an optimality path (where the individual thresholds are all equal ci = c)
which is coupled to a second DE describing the evolution of the number of coconuts in
the population. However, knowing the optimal dynamics, that is, the differential equa-
tions that an optimal solution has to fulfill, is not sufficient to study problems such as
equilibrium selection or stability in general, because the optimality conditions do not say
anything about the behavior of the system when it is perturbed into a suboptimal state.
On the other hand, the Bellmann equation is also at the root of reinforcement learn-
ing algorithms and temporal difference (TD) learning in particular which are known to
converge to this optimality under certain conditions [13]. The incorporation of learning
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in the agent-based version of the Coconut Model and the assessment of its adequacy by
comparison to the original solution is the main contribution of this paper.
The necessity to take into account not only the result of rational choice but to focus
more on the processes that may lead to it has been pointed at by Simon almost 40
years ago [12]. Around ten years later, the notion of artificial adaptive agents has been
proposed by Holland and Miller [8] who define an adaptive agent by two criteria: (1.)
the agent assigns a value (fitness, accumulated reward, etc.) to its actions, and (2.) the
agent intends to increase this value over time (p. 365). Virtually all models with adaptive
agents proposed since then follow these principles. In genetic algorithms, for instance,
an evolutionary mechanism is implemented by which least fit strategies are replaced by
fitter ones and genetic operators like recombination and mutation are used to ensure that
potential improvements are found even in high-dimensional strategy spaces (e.g., [7, 14]).
Another approach which became prominent during the last years could be referred to as
strategy switching (e.g., [1, 4, 9, 10]). Here agents constantly evaluate a set of predefined
decision heuristics by reinforcement mechanisms and chose the rule that performs best
under the current conditions.
The TD approach used here differs mildly from these models but fits well with the abstract
specification of adaptive behavior proposed in [8]. In our case agents learn the value
associated to having and not having a coconut in form of the expected future reward and
use these values to determine their cost threshold ci. That is, agents are forward-looking
by trying to anticipate their potential future gains. While checking genetic algorithms or
strategy switching methods in the context of the Coconut Model is an interesting issue
for future research, in this paper we would first like to derive an agent-based version of
the model that is as closely related to the original model as possible.

2 Individual Choice the Original Model

In previous work [2], we have concentrated on the state dynamics and the effect of het-
erogeneous but fixed individual strategies. For the homogeneous case, the state dynamic
is given by

ε̇ = f(1− ε)G(c)− ε2 (1)

where ε is the ratio of agents having a coconut, f the probability that agents find a coco
tree and G(c) a cumulative distribution defining the probability that the cost of a tree
is smaller than the cost accepted by the agents ctree < c. We gave a detailed account of
how to incorporate heterogeneous cost thresholds ci into (1). (See [2] for the details.)
A crucial ingredient of the coconut model, however, is that agents are not allowed to
directly consume the coconut they harvested. They rather have to search for a trading
partner, that is, for another agent that also has a coconut. The idea behind this is that
agents have to find buyers for the goods they produce. If an agent that possesses a nut
encounters another agent with a nut both of them are supposed to consume instanta-
neously and derive each a reward of y from this consumption. In effect, this means that
the expected value of climbing a tree depends on the total number of coconuts in the
population or, more precisely, on the time agents have to wait until a trading partner will
be found. Rational agents are assumed to maximize their expected future utility

Vi(t) = E
∞∫
t

e−γ(τ−t)ri(τ)dτ



where ri(τ) corresponds to the cost of climbing or respectively to the utility y from
consumption of agent i at time τ and γ to the discount factor. A fully rational agent
has to find the strategy c∗i that maximizes its expected future reward and, since agents
cannot consume their coconut instantaneously, this reward depends on his expectation
about their trading chances. This can be formulated as a dynamic programming problem
with dVi(t)/dt = −E[ri(t)]+γVi(t). Considering that there are two states (namely, si = 0
or si = 1) there is a value associated to having (Vi(si = 1, t) := V t

i (1)) and to not
having (Vi(si = 0, t) := V t

i (0)) a coconut at time t. As a rational agent accepts any
opportunity that increases expected utility, a necessary condition for an optimal strategy
is c∗i = V t

i (1) − V t
i (0). By this reasoning, assuming homogeneous strategies c∗i = c∗

Diamond derives another DE that describes the evolution of the optimal strategy

dc∗

dt
= γc∗ + ε(c∗ − y) + f

[∫ c∗

0

(c∗ − c)dG(c)
]

(2)

The fixed point solutions of the model are then given by the points (ε∗, c∗) for which (1)
and (2) are zero.

3 Individual Choice by Temporal Difference Learning

We shall now turn to an adaptive mechanism by which the strategies are endogenously
(and heterogeneously) set by the agents. As in [2], we follow in this implementation the
conception of Diamond [6] as closely as possible. That is, firstly, the threshold ci has to
trade off the cost of climbing against the expected future gain of earning a coconut from
it. In other words, agents have to compare the value (or expected performance if you
wish) of having a coconut V t

i (1) with the value V t
i (0) of staying without a nut. If the

difference between the expected gain from harvesting at time t and that of not harvesting
(V t

i (1) − V t
i (0)) is larger than the cost of the tree ctree, agents can expect a positive

reward from harvesting a nut now. Therefore, in accordance to [6], it is reasonable to set
cti = V t

i (1)− V t
i (0).

Now, how do agents arrive at reliable estimates of V t
i (1) and V t

i (0)? We propose that
they do so by a simple temporal difference (TD) learning scheme that has been designed
to solve dynamic programming problems as posed in the original model. Notice that for
single-agent Markov decision processes temporal difference schemes are proven to con-
verge to the optimal value functions [13]. In the Coconut Model with agents updated
sequentially it is reasonable to hypothesize that we arrive at accurate estimates of V t

i (1)
and V t

i (0) as well. Notice that agents do not learn the ε–dependence explicitly, but con-
dition their actions only on their own current state. As a result, agents will only learn
optimal stationary strategies. The consideration of more complex (and possibly hetero-
geneous) information sets, including previous trends and information about other agents
might lead to a richer set of solutions and points to interesting extensions of the model.
However, we think that it is useful to first understand the basic model and relate it
to the available theoretical results as this will also be needed to understand additional
contributions by model extensions.

3.1 Learning the Value Functions by Temporal Differences

The learning algorithm we propose is a very simple value TD scheme. Agents use their
own reward signal rti to update the values of V t

i (s
t
i = 1) and V t

i (s
t
i = 0) independently



from what other agents are doing. In each iteration agents compute the TD error by
comparing their current reward plus the discounted expected future gains to their current
value estimate

δt+1
i = rt+1

i︸︷︷︸
reward

+ e−γN
−1 [

st+1
i V t

i (1) + (1− st+1
i )V t

i (0)
]︸ ︷︷ ︸

estimated discounted future value

−
[
stiV

t
i (1) + (1− sti)V t

i (0)
]︸ ︷︷ ︸

current estimate

. (3)

Notice that the discount factor γ as defined for the time continuous DE system is rescaled
as γr = e−γN

−1 for the discrete-time setting and in order to account for the finite simu-
lation with asynchronous update in which only one (out of N) agents is updated in each
time step (N−1). The iterative update of the value functions is then given by

V t+1
i (1) = V t

i (1) + αδt+1
i sti

V t+1
i (0) = V t

i (0) + αδt+1
i (1− sti)

(4)

such that Vi(1) (Vi(0)) is updated only if agent i has been in state 1 (0) in the preceding
time step.
The idea behind this scheme and TD learning more generally is that the error between
subsequent estimates of the values is reduced as learning proceeds which implies conver-
gence to the true values. The form in which we implement it here is probably the most
simple one which does not involve update propagation using eligibility traces usually in-
tegrated to speed up the learning process [13]. In other words, agents update only the
value associated with their current state sti. While simplifying the mathematical descrip-
tion (the evolution depends only on the current state) we think this is also plausible as
an agent decision heuristic.
All in all the model implementation1 is

(0) Initialization: set initial values V 0
i (1), V

0
i (0) and states s0i according to the de-

sired initial distribution. Set initial strategies c0i = V 0
i (1)− V 0

i (0).
(1) Iteration loop I (search and trade):

(a) random choice of an agent i with probability ω(i) = 1/N
(b) if si = 0 climb a coco tree with probability fG(ci) and harvest a nut, i.e.,

st+1
i = 1

(c) else trade (consume) with probability ε such that st+1
i = 0

(2) Iteration loop II (learning):
(a) compute TD error δt+1

i for all agents with reward signal rj = 0,∀j 6= i and
ri depending on the action of i in part (1)

(b) update relevant value function by V t+1
i (sti) = V t

i (s
t
i) + αδt+1

i for all agents
(c) update strategy by ct+1

i = V t+1
i (1)− V t+1

i (0)

If not stated otherwise, the simulation experiments that follow are performed with the
following parameters. The costs of trees are uniformly drawn from the interval defined
by cmax = 0.5 and cmin = 0.3. A strategy ci larger than cmax hence means that the agent
accepts any tree, ci < cmin that no tree is accepted at all. The rate of tree encounter
is f = 0.8 and the utility of coconuts is y = 0.6. We continue considering a relatively
small system of 100 agents and the learning rate is α = 0.05. The parameter γ is the
discount rate with small values indicating farsighted agents whereas larger values discount
1 See www.openabm.org/model/5045 for a MatLab implementation made available on the OpenABM archive.



future observations more strongly. The system is initialized (if not stated otherwise) with
ε0 = 0.5, V 0

i (1) = y and V 0
i (0) = 0 for all agents such that c0i = y > cmax and everybody

climbs in the beginning.

3.2 Convergence Behavior with Learning

We now report on the overall convergence behavior of the ABM as a function of γ and
compare it to the fixed point solution of [6], see also [11]. There are two interesting
questions here: (1.) what happens as we reach the bifurcation value γ > γ∗ at which the
two fixed point curves ε̇ = 0 and ċ = 0 cease to intersect? (2.) in the parameter space
where they intersect, which of the two solutions is actually realized by the ABM with TD
learning?

cmax
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lower fixed point є
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Fig. 1. L.h.s.: The fixed point behavior of the DE system (1) - (2) for γ ∈ [0, 0.5] is compared to single model
realizations (200000 steps) for different γ. The agent model with TD learning scheme converges closely to the
upper theoretic fixed point values. R.h.s.: Numerically computed vector field for the dynamics of the agent model
for γ = 0.2. The fixed point curves of the DE system are also shown.

Both questions are answered with Fig. 1. First, if γ becomes large, the ABM converges
to the state in which agents do not climb any longer. That is, ε∗ = 0 and c∗ < cmin.
However, additional simulation experiments showed that the bifurcation takes place at
slightly lower values of γ. In fact, these experiments revealed that the learning rate α
governing the fluctuations of the value estimates plays a decisive role (the larger α, the
smaller the bifurcation point). See [3] for some more details. Besides these small deviation,
however, Fig. 1 shows that on the whole the ABM reproduces the theoretical results with
considerable accuracy.
Regarding the second question – that is, equilibrium selection – Fig. 1 provides strong
indications that the only stable solution for the simulated dynamics is the upper fixed
point, sometimes referred to as »optimistic« solution. The vector field (numerically com-
puted) on the r.h.s. renders visible that the lower fixed point acts as a saddle under the
learning dynamics. Depending on the initial strategies and coconut level, when close to
the »pessimistic fixed point« the system is driven either to the »optimistic« solution or
to a no-production state.
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Fig. 2. R.h.s.: Time evolution of the system initialized at the low fixed point (dashed dark line) for different
system sizes. L.h.s.: The same learning curve is obtained when rescaling time by the number of agents.

We will confirm this by providing numerical arguments for the instability of the »pes-
simistic solution« initializing the model at that point. We concentrate again on the pa-
rameterization used in the previous sections with f = 0.8, y = 0.6, cmin = 0.3, cmax = 0.5,
climbing costs uniformly distributed in [cmin, cmax] and stick to a discount rate γ = 0.1.
Fig. 2 shows the evolution (200000 steps) of the ABM with TD learning for an initializa-
tion at the low fixed point (shown by the dashed dark line). There are 100 agents and the
learning rate is α = 0.025. Each curve in the plot is an average over 5 simulation runs.
It becomes clear that trajectories are repelled from the low fixed point into the direction
of the »optimistic« solution. As the size of the system increases, the initial period in
which the system stays close to the lower fixed point increases. However, as shown on
the right of Fig. 2, the differences between the learning curves in systems of different size
vanish when time is rescaled by the number of agents such that one time step accounts
for N individual updates. This provides further evidence for the instability of the lower
fixed point which we cannot expect to become stable in the large (infinite) system.

4 A Model with Three Products

The analyses we have performed so far, document the development of an agent-based
baseline model that matches with the behavior of Diamond’s theoretical model from the
1980ies. Having that baseline well-understood, there are now many ways in which the
agent version may be extended so to create an artificial economy with more complex
ingredients. Here we present results for a model in which agents produce two basic goods
which must be combined to a third one in order to derive utility from consumption.
These two basic goods however may be sold to or bought from others which increases the
number of decision alternatives.2

We keep the setup very close to the model analyzed in the previous sections. There are
now two basic products (or resources) A and B which agents produce if the respective
cost threshold cA, cB is above a randomly drawn production cost (for A and B this
cost drawn uniformly from [cmin, cmax]). However, agents cannot consume these basic
products anymore (as opposed to the simple coconut setting). They have to gather both
basic goods (say coconuts and bananas) to »produce« an elaborate product AB (say a
coco-banana shake). We put »produce« in parenthesis because here we simply assume

2 This model extension will also be made available on OpenABM before the conference.



that this production is accomplished as soon as the two products have been gathered.
More complex variants including production costs and times associated to that step are
highly encouraging but omitted in this first analysis which is aimed at understanding the
basic phenomena that can occur in such a setting. In the model, only AB in conjunction
are consumed on encountering another agents that possess AB as well. That is, only if
two AB-agents meet they obtain reward y by consuming their coco-banana shake.
However, agents are now also allowed to buy and sell the two basic products A and B
to others. This becomes an additional source of deriving utility from production which
has not been present in the original model. For simplicity we assume that climbing costs,
prices paid when selling a basic good as well as utility from consumption have the same
unit and are accounted as positive (sell, consume) or negative (produce, buy) rewards.
Here we assume a price formation process based on the values the trading partners have
learned for the different states (si ∈ {0, A,B,AB}). Other mechanisms such as markets
are a compelling future ingredient as well.

4.1 Model

Values. We extend the value learning scheme analyzed above in the one-product case
in a straightforward way to three products. That is, each agent holds and updates four
values one for each possible state Vi(s) : s ∈ {0, A,B,AB}. We explain their updating
below.
Prices. We treat prices as differences in values that agents compute on the basis of their
value functions. In analogy to the original model, the cost threshold (now referred to as
price) pAi (0 → A) = Vi(A) − Vi(0) specifies the price agent i would be willing to pay in
order to harvest an A-tree. Additionally pAi (0 → A) now also defines the price i would
maximally pay when offered A by another agent. The price pBi (0→ B) is given and used
equivalently. There are two more value differences that play a role in our model, namely
pAi (B → AB) and pBi (A → AB). They define what agent i is willing to pay for B(A) if
(s)he already possesses A(B) and would have AB after buying. They are given by

pAi (B → AB) = Vi(AB)− Vi(B) (5)
pBi (A→ AB) = Vi(AB)− Vi(A) (6)

Thus, price formation is based on the expected gain in value associated to the state-
transition the respective action leads to.
Basic Production. Production is conceived as before and for the two raw materials
symmetrically. Agents encounter coco (A) and banana (B) trees at a fixed and homo-
geneous rate fA = fB = f . The costs of the trees are equally distributed as well, that
is: uniformly in [cmin, cmax]. Agents climb an occurring tree if the price (given by the re-
spective value difference, see above) they would be willing to pay exceeds that randomly
drawn cost (ctree < ci). They have to pay that cost (ctree) for production. For instance,
consider that an agent that has B encounters an A–tree. Then the cost threshold (the
price (s)he is willing to pay) is given by pAi (B → AB) = Vi(AB) − Vi(B). The agent
will climb if pAi (B → AB) is above the randomly drawn cost ctree. This cost will be i’s
(negative) reward rt+1

i for that time step.
Consumption. We assume, that in the three-product scenario only the elaborated good
AB can be consumed by trading with others. Therefore, if agent i meets another agent j
such that both hold AB both instantaneously consume the elaborated good and derive



utility y from it. A and B alone cannot be consumed in trade but be sold or bought as
specified below.
Trading. Agents are allowed to sell the raw materials A and B they hold to others. Say
agent i possesses A and is chosen for interaction with another agent j. As a first case
assume that sj = 0, that is, agent j has no good at the moment. The price that j is
willing to pay for A is pAj (0 → A) = Vj(A) − Vj(0). Conversely, the price i assigns to A
is given by pAi (0→ A) = Vi(A)− Vi(0). Agent i will sell A if pAj (0→ A) > pAi (0→ A) at
the intermediate price

pA =
pAj (0→ A) + pAi (0→ A)

2
. (7)

This procedure mimics an idealized bargaining process in which the values pAj and pAi
are first used to assess whether there is an interest in trading at all and then form the
basis for repeated bids during price negotiation. If i sells A to j, agent i receives reward
rt+1
i = pA and j reward rt+1

j = −pA during that round while st+1
i = 0 and st+1

j = A. As
a second case consider j already possesses B. The agent would then be willing to pay
pAj (B → AB) = Vj(AB) − Vj(B) for A which may become even higher if j has learned
that consumption of AB pays. In the other cases, sj = A or sj = AB, A is not sold.
Value update. For the update of the value functions for each agent the temporal differ-
ence error is computed as

δt+1
i = rt+1

i + e−γN
−1

V t
i (s

t+1
i )− V t

i (s
t
i) (8)

where rt+1
i 6= 0 only if i has performed any action (associated to a reward) during that

step, e−γN−1
V t
i (s

t+1
i ) the discounted future value estimated on the basis of the new state

and V t
i (s

t
i) the value associated to the old state (notice that sti = st+1

i for all agents that
made no action at t). The values are

V t+1
i (s) =

{
V t
i (s) + αδt+1

i if s ≡ sti
V t
i (s) else

(9)

such that only the value of the good with which agent i entered the iteration step is
evaluated.
Event Schedule. In the model, we first chose two agents (i and j) at random. At the
maximum, one (trans)action is performed during each time step and the different options
are tried in the following order: 1. consumption if si = sj = AB; 2. i tries to sell to j if
si 6= 0; 3. i performs the production step if a tree is occurring and the cost is lower than
the respective price. Notice that the order of attempts for different actions may have a
strong impact on the model behavior and should in a more realistic setting be something
agents decide about.
Parameters and Initialization. If not otherwise stated, the frequency with which
coco and banana trees occur are fA = fB = 0.4 and the cost distributed uniformly in
[cmin, cmax] = [0.3, 0.5]. The reward on consumption is y = 4.0. The learning rate is
α = 0.1 and the continuous time discount factor γ = 0.1 or exp(−γ/N) = 0.999 for the
discrete system of 100 agents. Agents are chosen with equal probability and there are no
geographical constraints.
In all simulations performed here, there are no products in the population at t = 0,
i.e. si = 0 : ∀i ∈ N . The initial values V 0

i (A), V
0
i (B), V 0

i (AB) are assigned at random
uniformly in [cmin, cmin + y(cmax − cmin)] except for V 0

i (0) which is set to zero.



4.2 Time Evolution

In Fig. 3, the time evolution of the model is shown for a system of 100 agents. The 100000
first time steps are shown in which on average each agent has been chosen 1000 times.
Out of a situation without any goods in the population, we observe the fast accumulation
of coconuts (A) and bananas (B) in the population. This is followed by a slow increase of
the number of AB–agents. The number of agent without any good also increases again
as these agents are more likely to encounter partners for consumption. Eventually, this
realization settles at a state where approximately 30% of the agents have no goods at
their disposal, 50 % hold either A or B and 20 % possess AB.
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Fig. 3. The first 100000 steps of a simulation of 100 agents are shown.

The plot on the bottom of Fig. 3 shows the evolution of the mean values agents assign to
the four different states. Not surprisingly, the value estimates of A and B behave in exactly
the same way, settling at around 1.6 in the long run of the model (≈ 300000 steps). The
value for AB is highest and settles at around 2.8 in the this parameter constellation, and
the value of having no good settles at around 1.2. Notice that the prices (and threshold for
production respectively) are given by the differences in values which converge much faster.
With this constellation of values, on average, agents production threshold (pAi (0 → A)
and pBi (0 → B)) is around 0.4 just in between cmin and cmax. On the other hand, when
already possessing of one basic good, agents are willing to pay pAi (B → AB) ≈ 1.2 for
the good that is missing for a coco-banana shake (AB).

4.3 Behavioral Regimes

These average values and prices however do not reveal that an interesting differentiation
of agent behavior emerges in the simulation. Namely, there are three different behavioral
strategies which different agents learn in the interaction with this artificial economy. This
is shown in Fig. 4.
Let us first consider the right-hand side of that figure which shows all agents in a plane
spanned by the number of buying versus selling actions performed in 100000 time steps
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(again 1000 steps on average for each single agent). The sizes of the data points represents
the accumulated reward of the respective agent. We clearly observe two groups of agents:
one which performs very well and is buying approximately two times more compared to
selling actions (red circles); and a second one which makes less (but positive) reward by
selling the raw products they produced (blue circles).
The left-hand side of Fig. 4 shows how this behavioral distinction is reflected in the values
different agents have learned for the different goods. Here, the production thresholds
pAi (0 → A) and pBi (0 → B) are plot against one another. While the red well-performing
agents tend to produce the two products by assigning a relatively high value to A and
B, the other group represented by the blue circles associates a low (even negative) value
to one of the raw materials. That is, the respective value is below the minimum cost of
trees (dashed lines) and they never produce that good. Consequently, the only way in
which these agent gather reward is by selling the raw material they »specialized on« to
agents from the other group that, conversely, treat the former as an additional source of
raw material supply.

4.4 Restricted Production

As a further example we look at the case that half of the population is not capable of any
production. This is modeled by letting fA = fB = 0 for one half of the agents referred
to as non-producers. The question is if these agents are capable of using the option to
buy products from the producers in order to accumulate reward by consumption and
how they achieve that. This is shown in Fig. 5 for 200 agents where non-producers are
represented by blue circles and producers plot in red.
Again we observed the emergence of different behavioral strategies triggered by the fact
that different agents learn different values for the four possible states. First, the group of
producers (red circles) differentiates as before into »sellers« and »consumers« with the
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former accumulating high rewards compared to the latter. The group of non-producers,
moreover, differentiates into four different sub-groups. First, some of these agents assign
a very high price to both pAi (0→ A) and pBi (0→ B) meaning that they are willing to buy
from everybody. These agents manage to perform very well and almost as good as the
well–performing producers. A second group of agents shows very little economic activity
and sells all the products bought before (and is therefore located along the diagonal on the
right-hand plot). The other two sub–groups among the non–producers develop a rather
sophisticated trading strategy by converging to a value difference that is very high for
one but low for the other basic good. When without any good, they will buy one basic
good first (say B and compare with the augmented description in Fig. 5) and never buy
the other one. Only when the first basic good is at their disposal, they will purchase the
other one to obtain and finally consume AB.

4.5 Discussion

The reason for these different behaviors to emerge in the simulation is related to the fact
that not all agents do explore the entire set of possible actions. Most importantly, the
group of »sellers« never experiences the high reward that is possible by consumption of
AB and therefore never learns that the value for having both basic goods at the same
time is actually high. Noteworthy, this effect is stable even with a considerable amount
of exploration implemented by adding a noise term to the value estimates.
From the point of view of multi-agent learning this effect may be read as a deficit of the
learning scheme incapable of ensuring convergence to the optimal solution. From the point
of view of agent-based modeling, on the other hand, it appears not completely implausible
that some agents experience a sequence of events related to low but positive rewards that
forces them into a behavioral regime in which some options are no longer accessible. In
this case, suboptimal behavior may lead to interesting constellations of agent behaviors
that sustain one another, as exemplified in the previous section.



5 Summary

In the first part of this contribution we continued the development of a theory-aligned
agent-based version of Diamond’s coconut model [6]. In the model agents have to make
investment decisions to produce some good and have to find buyers for that good. Step
by step, we analyzed the effects of single ingredients in that model – from homogeneous
to heterogeneous (presented last year [2]) to adaptive strategies (this paper) – and relate
them to the qualitative results obtained from the original dynamical systems description.
We computationally verify that the overall behavior of the ABM with adaptive strategies
aligns to a considerable accuracy with the results obtained in the original model. The
main outcome of this exercise is the availability of an abstract baseline model for search
equilibrium which allows to analyze more realistic behavioral assumptions such as trade
networks, heterogeneous information sets and different forms of bounded rationality but
contains the idealized solution as a limiting case.
Another contribution is the incorporation of temporal difference (TD) learning as a way
to address problems that involve inter-temporal optimization in an agent-based setting.
The coconut model serves this purpose so well because the strategy equation in the
original paper is based on dynamic programming principles which are also at the root
in this branch of reinforcement learning. Due to this common foundation we arrive at
an adaptive mechanism for endogenous strategy evolution that converges to one of the
theoretical equilibria, but provides, in addition to that, means to understand how (and if)
this equilibrium is reached from an out-of-equilibrium situation. Such a characterization
of the model dynamics is not possible in the original formulation.
Finally, we presented a model extension to three products. To stay with the island
metaphor of Diamond, agents now search for coco and banana trees and produce a
coco-banana shake once the two basic goods are at their disposal. Only these shakes
are consumed on encountering another agent. But agents are now also allowed to sell
their fruits. This model gives rise to interesting constellations of heterogeneous behaviors
compelling enough for future examination.
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